

# Implementation of PRA Policy at the US Nuclear Regulatory Commission

Presented at Department of Energy Workshop on Risk Assessment and Safety Decision Making Under Uncertainty

> Mark A. Cunningham Director, Division of Risk Assessment Office of Nuclear Reactor Regulation United States Nuclear Regulatory Commission

> > September 22, 2010



# **Regulatory Context**

- Traditional regulatory environment
  - Design basis accidents
  - Single failure criterion
  - Defense in depth
  - Safety margins
- > Regulations
- Conservatism

- Incremental use of risk assessment
- Policy
  - Safety goals
  - PRA
- Realism



### **PRA Policy Statement**

#### Background

 "NRC has generally regulated the use of nuclear material based on deterministic approaches...<u>A</u> probabilistic approach to regulation enhances and extends this traditional, deterministic approach, by: (1) allowing consideration of a broader set of potential challenges to safety, (2) providing a logical means for prioritizing these challenges based on risk significance, and (3) allowing a broader set of resources to defend against these challenges."



### **PRA Policy Statement**

Increase use of PRA technology in all regulatory matters to the extent supported by the state-of-the-art in PRA methods and data and in a way that complements the deterministic approach and supports the traditional defense-in-depth philosophy.

Use PRA, where practical within the bounds of the stateof-the-art, to reduce unnecessary conservatism in current regulatory requirements, regulatory guides, license commitments, and staff positions and to support proposals for additional regulatory requirements in accordance with 10 CFR 50.109 (Backfit Rule).



### **PRA Policy Statement**

- PRAs used in regulatory decisions should be as <u>realistic</u> as practicable and supporting data should be publicly available.
- Safety goals and subsidiary numerical objectives are to used with appropriate consideration of <u>uncertainties</u> in making regulatory judgments on the need for new generic requirements.



## Policy Implementation: Rule Changes

- Risk-informed requirement additions
  - Station blackout (10CFR50.63)
  - Anticipated transients without scram (50.62)
  - Maintenance (50.65)
- Risk-informed requirement reductions
  - Combustible gas control (50.44)
- Risk-informed alternatives
  - 50.48(c) "National Fire Protection Association Standard NFPA 805"
  - 50.61a "Fracture toughness requirements for protection against pressurized thermal shock events"
  - 50.46a "Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors" [proposed rule]
  - 50.69 "Risk-informed categorization and treatment of systems, structures and components for nuclear power reactors"



Policy Implementation: Licensing Basis Changes (Regulatory Guide 1.174)

- Expectations
  - Safety impacts evaluated in <u>integrated manner</u>
  - Scope, level of detail, and technical acceptability of engineering analyses should be
    - <u>appropriate for scope of change</u>
    - based on as-built, as-operated plant
    - reflect operating experience
  - PRA quality assurance and quality control
  - Appropriate consideration of uncertainty



# Policy Implementation: Licensing Basis Changes





#### Summary

- NRC's Safety Goal and PRA Policy Statements include mechanisms to manage uncertainty
  - PRA as an alternative, realistic, view
  - Consideration of safety margins and defense in depth
  - Monitoring of performance
  - Use of mean values
- NRC has successfully implemented these policies
  - Rule changes
  - Licensing basis changes